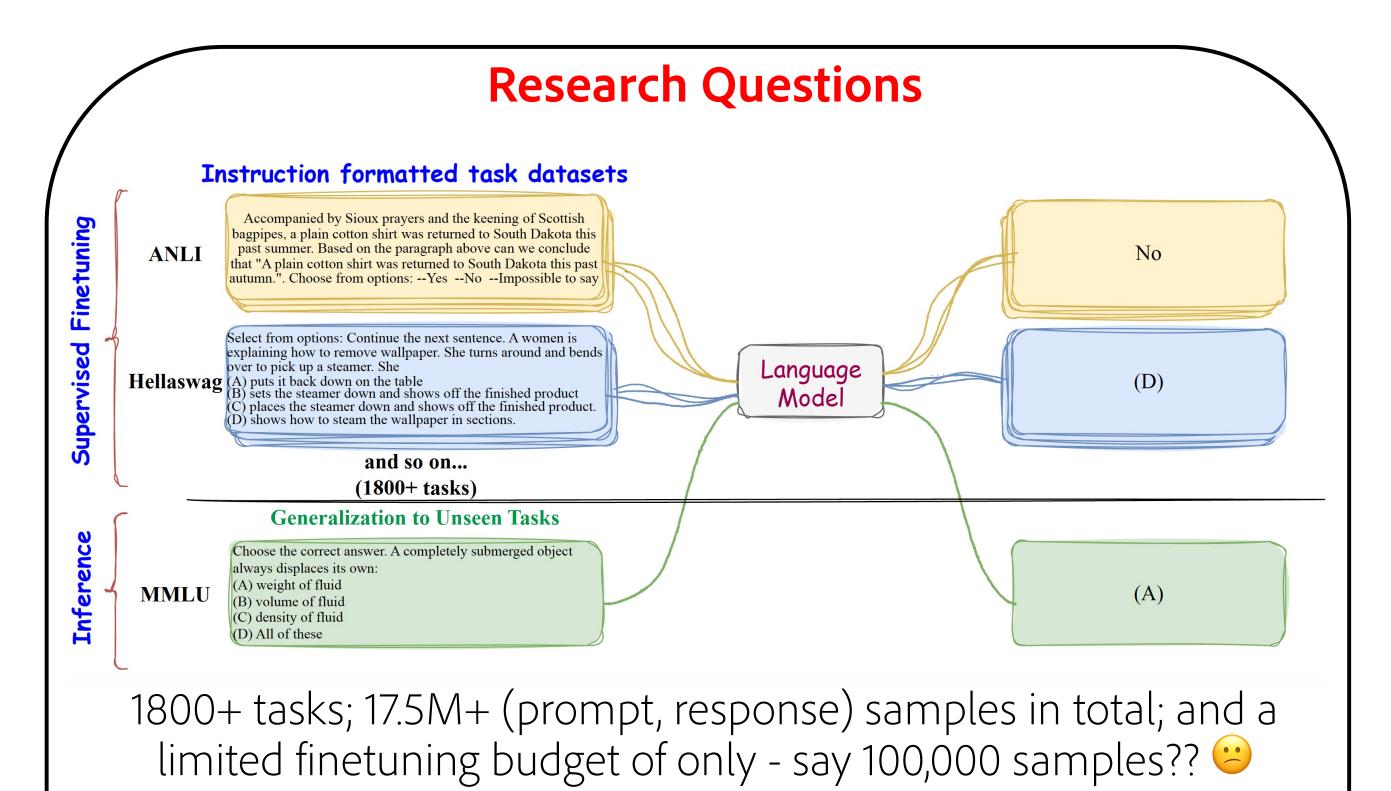


SMART: Submodular Data Mixture Strategy for Instruction Tuning

H S V N S Kowndinya Renduchintala¹, Sumit Bhatia¹, Ganesh Ramakrishnan²



The SMART Algorithm

Let's say we have a collection of *M* instruction-formatted task datasets - $\mathcal{D} = \{T_1, T_2, \dots, T_M\}, \text{ where each } T_i = \{(prompt_{ij}, response_{ij})\}_{i=1}^{N_T_i}$ consists of N_{T_i} (prompt, response) pairs such that $\sum_{i=1}^{M} N_{T_i} = N$.

Given an $M' \leq M$ and an $N' \leq N$, how do we select a subset of M' tasks $\mathcal{D}' = \{T'_1, T'_2, \dots, T'_{M'}\} (\mathcal{D}' \subseteq \mathcal{D})$, and subsequently $\mathcal{S} = \{S_1, S_2, \dots, S_{M'}\}$, where $S_i \subseteq T_i$ and $\sum_{i=1}^{M'} |S_i| = N'$, such that fine-tuning on S alone is (nearly) as effective as fine-tuning on the entire \mathcal{D} ?

Stage-1: Weighted Task Subset Selection

```
\mathcal{D}' = \arg \max f_1(X)
       X \subseteq \mathcal{D}
     |X| \leq M'
```

How many samples to select from each task? And which samples?

And, do we really need all tasks? 😅

May be only a few representative tasks are enough... 🖗

Submodular Functions

A set function $f: 2^{\mathcal{V}} \to \mathbb{R}$ is called a submodular function if the following diminishing gains property is satisfied: $f(X \cup \{v\}) - f(X) \ge f(Y \cup \{v\}) - f(Y)$ $\forall X \subseteq Y \subseteq \mathcal{V}; \ v \in \mathcal{V} \setminus Y$

Example – Consumer costs are typically submodular:

 $f(\checkmark) - f(\circledast) \ge f(\checkmark) - f(\And)$

Examples of Submodular Functions

Submodular Function	f(X)
Facility Location	$\sum_{i \in \mathcal{V}} \max_{j \in X} s_{ij}$
Graph Cut	$\left \sum s_{ij} - \lambda \sum s_{ij} \right $

 $i,j \in X$

If $\{g_1, g_2, \dots, g_{M'}\}$ are the corresponding value gains, then the task budgets are computed as

$$N'_{j} = \frac{(1 + g_{j} + 0.5g_{j}^{2})}{\sum_{k=1}^{M'} (1 + g_{k} + 0.5g_{k}^{2})} N_{j}$$

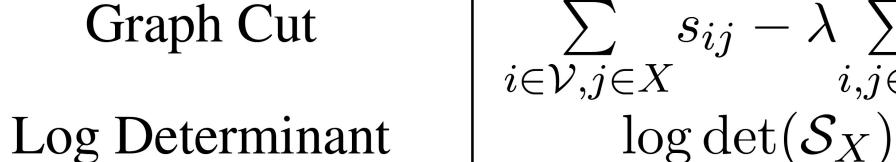
Stage-2: Instance Subset Selection

 $S = \bigcup_{j=1} \arg \max f_2(X)$ $|X_j| \leq N'_i$

Choosing (f_1, f_2)

A Grid Search revealed that:

- \succ Graph Cut works best for f_1
- \succ The optimal f_2 however, also depends on number of tasks (M') For higher M's, each task on average gets a relatively low budget and the need for representation dominates the need for diversity; however, when there is sufficient budget for each tasks (lower M's), the need for diversity takes over.



 $(\mathcal{V} \text{ is the ground set and } X \subseteq \mathcal{V})$

 s_{ij} is the similarity between two elements i and j of the ground set and \mathcal{S}_X is the similarity matrix between items in X

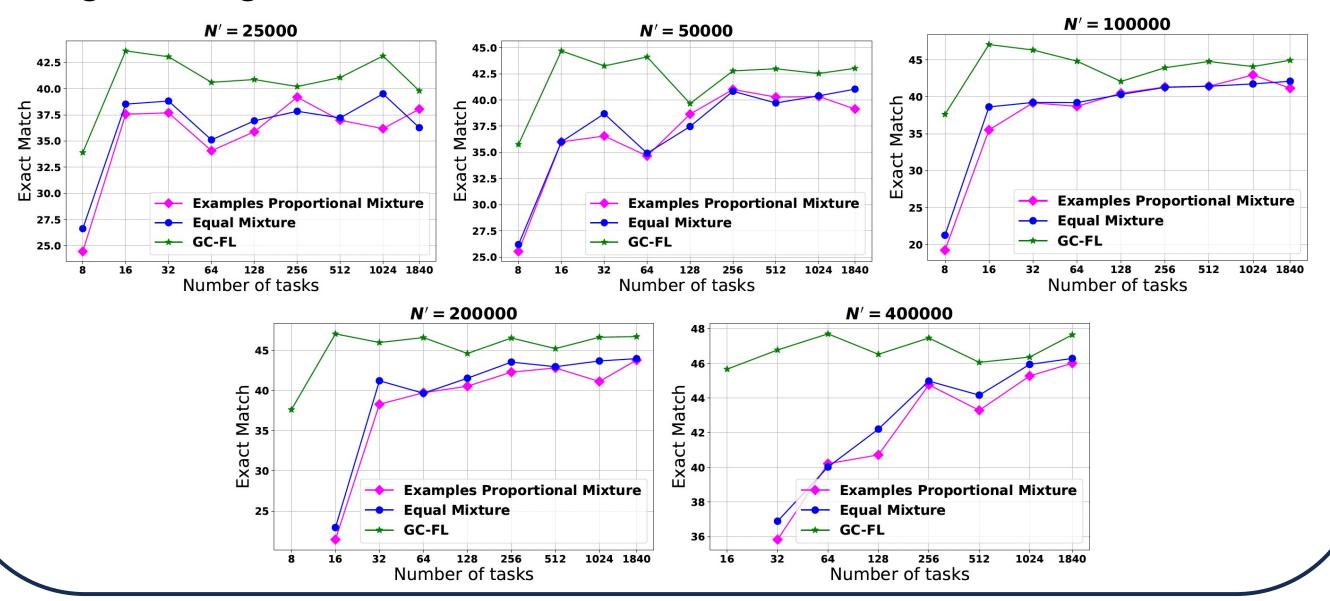
Facility Location models representation; Log Determinant models diversity; Graph Cut models a trade-off between representation and diversity controlled by the parameter λ .

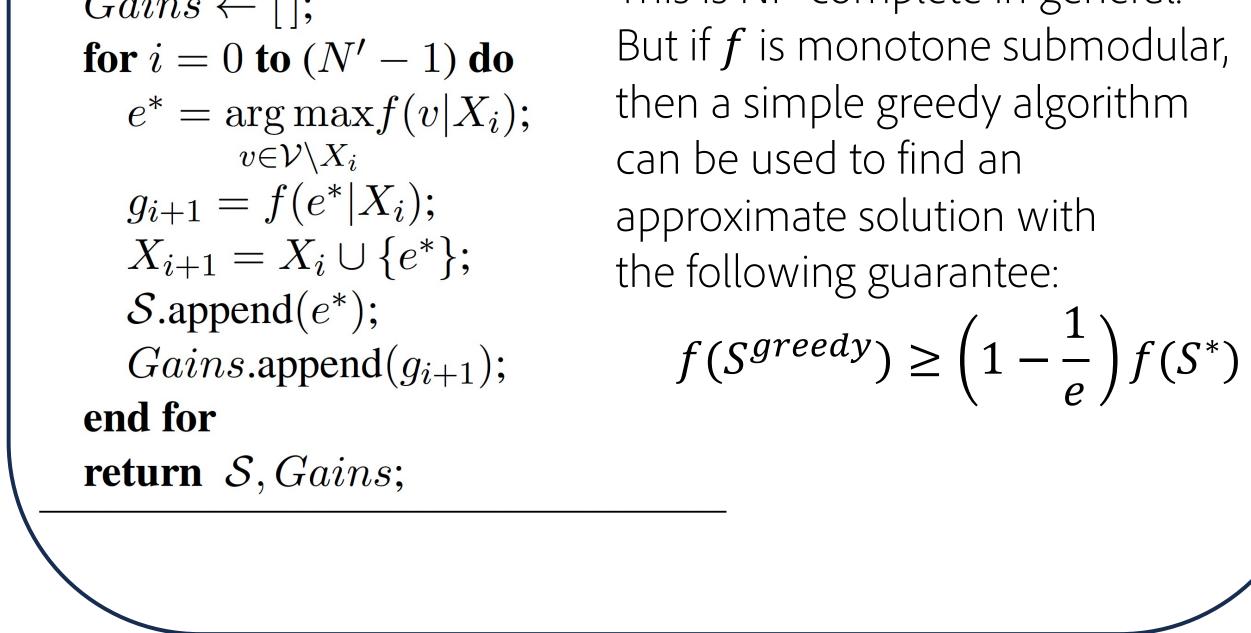
Cardinality Constrained Submodular Maximization $S^* = arg \max_{X \subseteq \mathcal{V}} f(X)$ $|X| \leq N'$ Algorithm 1 The Naïve Greedy **Input:** Ground Set (\mathcal{V}) , Budget (N') $X_0 \leftarrow \emptyset;$ $\mathcal{S} \leftarrow [];$ This is NP-complete in general. $Gains \leftarrow [];$

N'	Data Mix.	MMLU-ZeroShot (Exact Match)				BBH-Zeroshot (Exact Match)			MMLU + BBH	
		STEM	Humanities	Social Sciences	Other	MMLU FULL	NLP	Algorithmic	BBH FULL	(Weighted Avg.)
25000	EPM (Baseline-1)	30.82	46	46.71	43.05	40.63	40.59	25.55	31.67	38.05
	EM (Baseline-2)	30.33	45.01	43.81	40.55	39.03	40.08	20.29	29.46	36.27
	SMART (Ours)	32.22	50.41	50.14	46.85	43.73	38.85	24.16	30.05	39.8
50000	EPM (Baseline-1)	31.59	47.68	47.18	44.68	41.76	41.25	26.49	32.64	39.14
	EM (Baseline-2)	35.22	49.58	51.01	48.13	44.99	41.96	22.83	31.24	41.04
	SMART (Ours)	36.51	53.06	54.49	50.79	47.58	46.73	20.1	31.75	43.03
100000	EPM (Baseline-1)	32.66	50.6	51.37	47.18	44.25	43.38	26.36	33.48	41.16
	EM (Baseline-2)	36.03	50.7	52.53	47.1	45.57	44.4	25.18	33.55	42.11
	SMART (Ours)	37.36	55.38	55.47	52.95	49.11	47.26	24.22	34.66	44.96
200000	EPM (Baseline-1)	35.19	54.64	54.75	50.58	47.53	45.25	26.57	34.52	43.79
	EM (Baseline-2)	38.6	54.05	54.72	51.47	48.68	41.36	24.75	32.28	43.96
	SMART (Ours)	39.2	57.29	58.71	55.01	51.32	47.99	24.47	35.27	46.7
400000	EPM (Baseline-1)	38.16	56.53	56.99	52.56	49.85	48.72	26.04	36.49	46.01
	EM (Baseline-2)	39.43	55.97	57.59	53.65	50.52	47.37	26.08	35.8	46.29
	SMART (Ours)	39.77	57.39	60.17	54.79	51.77	49.25	26.35	37.43	47.65
17,591,640	Full FLAN 2022	42.44	59.1	61.82	55.1	53.43	50.7	27.6	38.11	49.03

M' < M

(Weighted avg. of exact matches on MMLU-zeroshot and BBH-zeroshot)





¹Adobe Inc., India ²Indian Institute of Technology Bombay, India

💡 Take Home Message 💡

In a low budget setting, rather than scaling the number of tasks, identify a few representative tasks and sample more from them to get a bigger bang for the buck!! 😃

