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Abstract

Instruction Tuning has emerged as a piv-
otal post-training paradigm that enables pre-
trained language models to better follow
user instructions. Despite its significance,
little attention has been given to optimiz-
ing the loss function used. A fundamental,
yet often overlooked, question is whether
the conventional auto-regressive objective —
where loss is computed only on response to-
kens, excluding prompt tokens — is truly op-
timal for instruction tuning. In this work, we
systematically investigate the impact of dif-
ferentially weighting prompt and response
tokens in instruction tuning loss, and pro-
pose Weighted Instruction Tuning (WIT) as
a better alternative to conventional instruc-
tion tuning. Through extensive experiments
on five language models of different fami-
lies and scale, three finetuning datasets of
different sizes, and five diverse evaluation
benchmarks, we show that the standard in-
struction tuning loss often yields subopti-
mal performance and limited robustness to
input prompt variations. We find that a
low-to-moderate weight for prompt tokens
coupled with a moderate-to-high weight for
response tokens yields the best-performing
models across settings and also serve as bet-
ter starting points for the subsequent pref-
erence alignment training. These findings
highlight the need to reconsider instruction-
tuning loss and offer actionable insights for
developing more robust and generalizable
models. Our code is open-sourced here.

1 Introduction

Transformer-based language models (LMs) pre-
trained using just an auto-regressive objective over

massive text corpora (Brown et al., 2020; Touvron
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et al., 2023) demonstrate remarkable performance
across a range of NLP tasks (Zhao et al., 2021;
Wang et al., 2022a; Wan et al., 2023; Sun et al.,
2023). However, they often struggle to reliably
follow user instructions as they are essentially fext-
completion models, whose pre-training objective,
i.e., next-token prediction, has a fundamental mis-
match with the goal of instruction following.

Instruction tuning aims to bridge this gap by
finetuning an LM on a diverse collection of task
instances phrased as instructions (Wei et al., 2022;
Sanh et al., 2022; Ouyang et al., 2022), where each
task instance consists of a task description (i.e.,
the instruction), an optional input, a corresponding
output, and in some cases, a few demonstrations.
Instruction tuning has been shown to significantly
improve instruction following capability and gen-
eralization of LMs to unseen tasks (Wang et al.,
2022b; Wei et al., 2022; Sanh et al., 2022; Chung
et al., 2024), and hence has emerged as a widely
adopted method in adapting pre-trained LMs to
better follow user instructions.

While many studies have shown that the effec-
tiveness of instruction tuning is heavily contingent
on various factors such as task composition (Wang
et al.,, 2023; Dong et al., 2024; Renduchintala
etal., 2024), data quality (Zhou et al., 2023a; Ding
et al., 2023), data quantity (Ji et al., 2023; Yuan
et al., 2023) and training dynamics (Mukherjee
et al., 2023; Pareja et al., 2025), a very funda-
mental yet under-explored factor is the loss func-
tion itself. The most commonly utilized loss func-
tion for instruction tuning is an auto-regressive
objective where loss on prompt tokens is zeroed
out (Aribandi et al., 2022; Li et al., 2024; Tou-
vron et al., 2023; Chiang et al., 2023; Mitra et al.,
2023) , thereby backpropagating only on response
tokens. Although the conventional loss function
has been shown to be effective in practice, it is not
clear why this should be the optimal choice, and
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Conventional Instruction Tuning zeroes out the loss on prompt tokens, while continual

pre-training treats prompt and response tokens equally. We find that both approaches are subopti-
mal and introduce Weighted Instruction Tuning (WIT), which assigns different weights A, and A,
(0 < Ap, A < 1) to prompt and response token losses respectively, as a better alternative.

to the best of our knowledge, there has not been
a comprehensive study on the choice of the loss
function to be used for instruction tuning.

Although a couple of recent works (Huerta-
Enochian and Ko, 2024; Shi et al., 2025) ex-
plored alternative instruction tuning loss formu-
lations, they still leave out a lot of open ques-
tions. For instance, Shi et al. (2025) proposed
Instruction Modelling, which does not zero out
the loss on prompt tokens and instead employs
the same auto-regressive objective used in the pre-
training step — effectively treating instruction tun-
ing as continual pre-training. However, this is
only found to be beneficial when lengthy prompts
are coupled with brief responses or when only a
small number of training examples are involved.
Similarly, Huerta-Enochian and Ko (2024) pro-
posed using a small non-zero weight on prompt
tokens, called prompt loss weight (PLW). The
authors found that a non-zero PLW is beneficial
when working with instruction-tuning data con-
taining short completions and that it can safely
be ignored when working with instruction-tuning
data containing longer completions. However, its
applicability across diverse training and evalua-
tion datasets remains unexplored. Moreover, the
extent to which prompt token weights should de-
pend solely on the relative length of completions
to prompts remains unclear.

While both these approaches offer some
promising directions, they also reveal a deeper is-

sue: the conventional loss function treats prompt
and response tokens in a binary fashion — ignoring
the former entirely during loss computation and
giving full weight to response tokens. Prompts
carry critical task-specific cues and implicit in-
structions that shape the model’s response. Ignor-
ing their learning signal may deprive the model of
valuable contextual guidance, while fully empha-
sizing response tokens can lead to overfitting on
response patterns. Recent concerns about models
memorizing response patterns (Jain et al., 2024;
Shi et al., 2025; Chu et al., 2025) further highlight
the need for a more flexible loss formulation for
instruction tuning. We hypothesize that by differ-
entially weighting prompts and responses, we can
better balance the contributions of contextual un-
derstanding and response generation, thereby fos-
tering improved generalization.

To this end, we propose Weighted Instruction
Tuning (WIT) as an alternative to the conven-
tional instruction tuning loss that assigns different
weights to prompt and response tokens, enabling
more fine-grained control of what the model
learns. Figure 1 illustrates this notion of differen-
tial weighting and shows how it differs from stan-
dard approaches of instruction tuning and contin-
ual pre-training. We perform extensive finetuning
experiments using this new loss function, by train-
ing 525 models with different weights on prompt
and response tokens across different model fam-
ilies, model sizes and instruction tuning datasets.



Furthermore, in order to investigate the transfer-
ability of gains from WIT to preference alignment
phase, we carry out an additional 525 training
runs on top of these models using the Direct Pref-
erence Optimization (DPO) algorithm (Rafailov
et al.,, 2023). We evaluate the models on pop-
ular benchmarks like MMLU (Hendrycks et al.,
2021) and BBH (Suzgun et al., 2023) to mea-
sure knowledge and reasoning capabilities, IFE-
val (Zhou et al., 2023b) to objectively evaluate
instruction-following ability, AlpacaEval (Li et al.,
2023) and MT-Bench (Zheng et al., 2023) for
judging conversational proficiency. The key in-
sights from our study are as follows:

* The conventional instruction tuning loss rarely
yields the best-performing model across different
configurations.

* Assigning a low-to-moderate weight (0—0.5)
to prompt tokens and a moderate-to-high weight
(0.5 -1) to response tokens consistently results in
the best-performing models across various settings
— with optimal configuration of prompt and re-
sponse token weights achieving an average rela-
tive gain of ~ 6.55% over the conventional loss.

* The gains from using WIT-loss also transfer to
the subsequent preference alignment training us-
ing the DPO algorithm, i.e., WIT-finetuned mod-
els are better starting points compared to conven-
tional instruction-tuned models, for DPO.

* A relatively moderate response-token weight not
only enhances performance on standard bench-
marks, but also improves model robustness to mi-
nor prompt variations.

* In many cases (although not always), finetuning
solely on prompts also enhances instruction fol-
lowing compared to the base model, suggesting
the possibility of instruction tuning the model even
in the absence of response annotations.

We also present a post hoc analysis of how
prompt characteristics — like length and diversity
— correlate with optimal prompt-token weights, of-
fering insights into factors influencing the choice
of token weights. We also examine how WIT re-
shapes prompt and response probability distribu-
tions, highlighting its impact on model behavior.
Our findings aim to aid the research in develop-
ment of more robust and generalizable models.

2 Proposed Formulation

Let D = {(P;,R;)}Y7 be an instruction tun-
ing dataset consisting of N7 (prompt, response)

pairs, where each prompt P; consists of an instruc-
tion (implicit or explicit) and an optional input,
while R; represents the expected ground-truth re-
sponse. If |S| denotes the number of tokens in se-
quence S, then P; and R; can be expanded as:

P, = {pgl),pgm, e ,pE‘PiD}v
T(\Ril)}

1 (2

R; = {r, ,7“1( N
The conventional instruction tuning, which is an
auto-regressive objective that zeroes out the loss

on prompt tokens, is given by:

N7 |Ri|

=5 > log Py (7‘1@ | Pi,rgl), e ,rl(j_l))
i=1j=1

Lir = N
bl
ey
Here, Pp(.) denotes the probability assigned by
the language model M.

As discussed in Section 1, ignoring learning
signals corresponding to the prompts may lead
the model to struggle with comprehending novel
prompts, while assigning full weight on response
tokens can hamper generalization ability by po-
tentially overfitting on common response patterns
in the instruction tuning data. Hence, we propose
Weighted Instruction Tuning (WIT), which assigns
differential weights to the prompt and response to-
kens, as an alternative to the conventional instruc-
tion tuning loss. It is given by:

‘CWIT = Ny -1 X
> (T #0)- [P +10, #0) - R
Nt |P;]
> [Ap log P4 (pz(-j) |p§1)7-~~,p§j71))
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where the weighting factors A, and \,., denote the
prompt and response token weights, respectively,
while I(.) is the indicator function. Lyt computes
the weighted sum of log-probabilities — scaling the
log-probabilities of prompt tokens by A, and those
of response tokens by ), — and then normalizes by
the count of tokens with non-zero weight. The in-
dicator function (II) ensures that the weighted sum
is divided exactly by those tokens whose weight
is non-zero. Note that the conventional instruc-
tion tuning loss L7 is a special case of Lyt for
(/\p’ >\r) = (07 1)'



3 Experimental Setup

3.1 Finetuning Data
Instruction Tuning

We considered the following three commonly used
diverse instruction tuning datasets to study the role
of prompt and response token weights:

(i) LIMA (Zhou et al., 2023b) is a carefully cu-
rated set of 1K high-quality (prompt, response)
pairs from sources such as Stack Exchange, wik-
iHow and Reddit, along with some manually au-
thored examples.

(ii) Alpaca-Cleaned is a filtered version of
the original Alpaca dataset (Taori et al., 2023)
after removing problematic instances, with
52K (prompt,response) pairs generated by
text-davinci-003.

(iii) Tiilu-v2 (Ivison et al., 2023) is a data mix-
ture with instances from diverse sources such as
FLAN-v2 (Longpre et al., 2023), Open Assis-
tant (Kopf et al., 2023), GPT4-Alpaca (Peng et al.,
2023), and Open-Orca (Lian et al., 2023), contain-
ing 326 K (prompt, response) pairs in total, from
which we randomly select 150K samples to re-
duce overall experiment cost and runtime.

The above choice of three datasets together
covers a small dataset (LIMA), a moderately-
sized dataset (Alpaca-Cleaned) and a large dataset
(Tiilu-v2). Furthermore, they also differ in other
characteristics such as response length, prompt
length and diversity, etc (Section 5.1).

Preference Alignment Training

For preference alignment training, we use a bina-
rized version of the UltraFeedback dataset (Cui
et al., 2024), consisting of around 60K (prompt,
chosen_response, rejected_response) tuples.

3.2 Finetuning Procedure

For our experiments, we consider five mod-
els spanning different model families and sizes
— Llama-3.2-1B, Gemma-2-2B, Llama-3.2-3B,
Mistral-7B, and Llama-3-8B. We finetune each
model for 1 epoch on Tiilu-v2, for 2 epochs on
Alpaca-Cleaned and for 5 epochs on LIMA. Fol-
lowing Touvron et al. (2023); Pang et al. (2024)
and other contemporary works, we use a learn-
ing rate of 5 x 1079 for Mistral-7B and a learn-
ing rate of 2 x 1075 for all other models, with
batch size 64, weight decay 0.1, and cosine learn-
ing rate decay with linear warmup over the first
1% of steps. For preference alignment phase, we

apply DPO (Rafailov et al., 2023), similar to Ivi-
son et al. (2023), with a learning rate of 5 x 1077,
batch size 32, weight decay 0.0, and 0.1 warmup
ratio, finetuning each model for 2 epochs. We ran
all the experiments on 8 NVIDIA A100-SXM4-
80GB GPUgs, utilizing Flash Attention 2.0 (Dao,
2024) and for larger models like Mistral-7B and
Llama-3-8B, we use the full-sharded data parallel
functionality in PyTorch!. The code to reproduce
all our results is open-sourced here.

3.3 Evaluation Protocol

We assess the performance of our instruction-
tuned models across various dimensions by em-
ploying the following evaluation suites:

(i) MMLU (Massive Multitask Language Un-
derstanding) (Hendrycks et al., 2021) is a bench-
mark spanning 57 tasks across humanities, STEM,
and social sciences, with approximately 14K
multiple-choice (prompt,response) pairs. We
evaluate models in a zero-shot setting using flex-
ible exact match, following LM Evaluation Har-
ness (Gao et al., 2024).

(ii) BBH (Big-Bench Hard) (Suzgun et al., 2023)
is a challenging subset of the BIG-Bench bench-
mark, comprising 23 tasks with 6.5K examples
requiring logical deduction and multi-step reason-
ing. We evaluate BBH in a zero-shot setting with-
out chain-of-thought (CoT) prompting, using flex-
ible exact match as the evaluation metric, similar
to MMLU.

(iii) AlpacaEval (Li et al., 2023) is an LLM-
based evaluation framework with 805 prompts de-
signed to assess conversational ability. Using
AlpacaEval-1.0, we report model win rates against
text-davinci-003, judged by GPT-40-mini.
Unlike MMLU and BBH, which emphasize cor-
rectness, AlpacaEval provides a holistic measure
by evaluating both response quality and relevance
in instruction-tuned models.

(iv) IFEval (Zhou et al., 2023b) is an instruction-
following evaluation benchmark that focuses on
a set of "verifiable instructions" offering an au-
tomated yet objective evaluation of instruction-
following capability, unlike LLM-as-a-judge.

(v) MT-Bench (Zheng et al.,, 2023) evalu-
ates multi-turn conversational and instruction-
following abilities using 80 high-quality multi-
turn questions. We adopt the single-answer grad-
ing scheme, with 160 responses rated from 1 to 10

"https://pytorch.org/docs/stable/notes/fsdp.html
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Figure 2: Heatmaps depicting average performance across five benchmarks (MMLU, BBH, AlpacaEval,
IFEval and MT-Bench) for different configurations of (A, \,;) and for different models finetuned on
Tiilu-v2, Alpaca-Cleaned, and LIMA. Best performing configuration is highlighted with a red circle. The
color map is based on relative gain with respect to conventional instruction tuning. Rows correspond
to prompt token weights (A,) and columns correspond to response token weights (). Conventional
instruction tuning is marked with IT and base model performance is marked with Base.

by an LLM judge®. For our experiments, we use
Llama-3.3-70B as the judge.

As illustrated in Figure 2, conventional instruc-
tion tuning, i.e., A, = 0 and A, = 1, is never
the optimal choice. This underscores the criti-
cal role of loss function design in instruction tun-
ing. Similarly, A, = 1 and A\, = 1, which
corresponds to the same auto-regressive objec-
tive used in pre-training step, i.e., instruction tun-
ing treated as continual pre-training as suggested
by Shi et al. (2025), also performs suboptimally.
In fact, it yields optimal average performance in
exactly 1 out of 15 (model, training_dataset)
combinations, reinforcing the need to reconsider
loss weighting strategies to enhance performance
and generalization.

4 Results

To study the role of prompt and response tokens
in instruction tuning, we finetune five language
models of different scales (Section 3.2) on the
three instruction tuning datasets (Section 3.1) by
varying the prompt and response weight config-
urations (A, Ar) in {0, 0.2, 0.4, 0.6, 0.8, 1.0}.
We then evaluate the generalization capability of
these instruction-tuned models across five diverse
benchmarks — MMLU, BBH, IFEval, AlpacaE-
val and MT-Bench. Figure 2 depicts the aver-

age performance of models across all benchmarks Building on these observations, we fur-

whereas Figures 6, 7, and 8 in the Appendix con-
tain the individual benchmark performances for
Tiilu-v2, Alpaca-Cleaned, and LIMA as training
data, respectively.

2We scale the rating by 10 while averaging with other
benchmarks.

ther quantify the relative performance gains of
WIT compared to the conventional instruction
tuning. As summarized in Table 1, WIT yields
consistent improvements in average benchmark
performance, achieving an average relative gain
of around 6.55%. These findings underscore the



Model Training Conventional WIT Loss Relative

Data Loss (Optimal A\p, \y) Gain
Tiilu-v2 28.60 31.61 +10.49%
Llama-3.2-1B  AlpacaCleaned 28.29 32.48 +14.81%
LIMA 24.57 24.68 +0.45%
Tiilu-v2 47.19 48.42 +2.61%
Gemma-2-2B  AlpacaCleaned 48.85 50.87 +1.04%
LIMA 38.15 38.97 +2.15%
Tiilu-v2 44.68 44.94 +0.58%
Llama-3.2-3B  AlpacaCleaned 42.08 42.34 +0.62%
LIMA 40.44 41.07 +1.56%
Tiilu-v2 63.69 64.69 +1.57%
Mistral-7B AlpacaCleaned 53.24 64.02 +20.25%
LIMA 52.31 52.99 +1.3%
Tiilu-v2 54.11 62.70 +15.88%
Llama-3-8B  AlpacaCleaned 52.54 59.81 +13.84%
LIMA 45.48 50.54 +11.13%

Average

Relative Gain +6.55%

Table 1: Relative percentage gain of WIT (for opti-
mal prompt and response token weights) over con-
ventional instruction tuning on downstream tasks.

value of assigning different weights to prompt
and response tokens. In some cases, the benefits
are especially pronounced — for example, finetun-
ing Mistral-7B on the AlpacaCleaned dataset with
Ap = 0.6 and A, = 0.4 achieves a relative perfor-
mance gain of approximately 20.25%.

We now present our key empirical findings
based on the trends observed across different con-
figurations.

4.1 Key Observations

Low-to-Moderate Prompt-Token Weight Yields
Best Performing Models. While the opti-
mal prompt-token weight varies based on the
specific setting, i.e., the particular combina-
tion of model, training dataset and evalua-
tion benchmark (as also demonstrated in Fig-
ures 6, 7, and 8 in the Appendix), we find
that in approximately 81% of the cases, i.e.,
61 out of the 75 (model, training_dataset,
evaluation_benchmark) combinations that we
considered, the best performance is achieved with
a low-to-moderate prompt-token weight in the
range of 0 to 0.6. Furthermore, in 56% of the
cases, i.e., 43 out of the 75 settings, the optimal
prompt-token weight is non-zero, strongly sug-
gesting that ignoring prompt tokens for instruction
tuning is suboptimal.

Moderate-to-High Response-Token Weight
Yields Optimal Models. Existing instruction-
tuning approaches (Shi et al., 2025; Huerta-
Enochian and Ko, 2024) assign maximal weight
to response tokens (i.e., A, =1). However, our
experiments reveal that A\, = 1 is the optimal
configuration in only 24% of the cases, i.e.,
18 out of the 75 (model, training_dataset,

Evaluation Average Average
Benchmark Optimal )\, Optimal )\,
MMLU 0.28 0.56
BBH 0.17 0.61
AlpacaEval 0.36 0.64
IFEval 0.48 0.43
MT-Bench 0.23 0.55

Table 2: Optimal prompt-token weight ()\,) and
response-token weight () for various evaluation
benchmarks, averaged across different (model,
training_dataset) combinations. The optimal
response-token weight varies from moderate to
high, with values ranging from 0.43 for IFEval to
0.64 for AlpacaEval, while the optimal prompt-
token weight varies from low to moderate, from
0.17 for BBH to 0.48 for IFEval.

evaluation_benchmark) combinations.  And
in all the remaining 76% of the cases, A\, < 1
yields the best performance. Furthermore, in
73.33% of the cases, i.e., 55 out of 75 settings, a
moderate-to-high response-token weight, in the
range of 0.4 to 1, yielded the best performance.
These findings further reinforce that conventional
instruction tuning, i.e., (Ap,A\r) = (0,1), leads
to suboptimal performance. = We hypothesize
that an extreme response-token weight might
encourage memorization of response patterns and
hurt generalization, as also noted by Jain et al.
(2024) and Shi et al. (2025).

Varying Effects of Response-Token Weight on
Instruction Adherence and Conversational Flu-
ency. The results on IFEval, AlpacaEval, and
MT-Bench across different models and training
datasets, as observed in Figures 6, 7 and 8, re-
veal a trade-off between instruction adherence and
conversational fluency. For IFEval, which mea-
sures instruction-following ability, lower response
weights are favoured — in 60% of cases, i.e., 9 out
of 15 (model, training_dataset) combinations,
Ar < 0.4 is optimal. In contrast, conversational
fluency benchmarks — AlpacaEval and MT-Bench
— prefer relatively higher response weights — in
60% of settings, i.e., 18 out of 30 combinations,
Ar > 0.6 is optimal, and in 80% cases, A\, > 0.4
yields best performance. Table 2 also reflects this
trend — the average optimal ), is relatively lower
for IFEval (0.43) compared to AlpacaEval (0.64)
and MT-Bench (0.55). These findings underscore
the importance of tailoring prompt and response
weighting in WIT to align with the intended down-
stream behaviour of instruction-tuned models.
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Figure 3: Heatmaps depicting average performance
val, IFEval and MT-Bench) for different configurations of (A, ;) and for different instruction-tuned
models which underwent DPO on UltraFeedback dataset. Best performing configuration after DPO is
highlighted with a red circle and best performing configuration from before DPO is highlighted with a
blue square. The color map is based on relative gain with respect to conventional instruction tuning.
Rows correspond to prompt token weights (),) and columns correspond to response token weights (A).
Conventional instruction tuning is marked with IT and base model performance is marked with Base.

Prompt-Only Tuning Also Enhances Base
Model Capabilities. As depicted in Figures 6,
7 and 8, training with A\, = 0, i.e., comput-
ing loss only on prompt tokens, still leads to
notable improvements over the base LM across
all benchmarks, except AlpacaEval, when using
the large and diverse Tiilu-v2 dataset for finetun-
ing. In contrast, for smaller datasets like Alpaca-
Cleaned and LIMA, improvements appear primar-
ily on IFEval. Thus, even without direct opti-
mization on response tokens, prompt-only fine-
tuning enhances instruction adherence, suggesting
that training on unannotated prompts can also im-
part instruction-following. The observations also
indicate that prompt-only tuning may require suf-
ficiently large and diverse data to generalize effec-
tively. Overall, the findings highlight the poten-
tial of leveraging large-scale unannotated datasets
to boost instruction-following abilities without ex-
tensive labeled prompt-response pairs.

across five benchmarks (MMLU, BBH, AlpacaE-

4.2 Transferability of Gains from WIT to
Preference Alignment Phase

To assess whether the gains from WIT persist af-
ter preference alignment training phase, we per-
formed DPO on models instruction-tuned with
various prompt and response token weights. Fig-
ure 3 depicts the average benchmark performance
of models that underwent DPO on top of the
instruction-tuned models from Figure 2. We
find that DPO performed on top of conventional
instruction-tuned models still yields suboptimal
results when compared to DPO performed on top
of weighted instruction tuned models. Table 3
shows the relative performance gain on down-
stream tasks for DPO on top of WIT (with opti-
mal setting of prompt and response token weights)
over DPO on conventional instruction tuning. We
find that the optimal configuration of prompt and
response token weights for DPO yields a rela-
tive gain of nearly 8%. Furthermore, while we
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Figure 4: Heatmaps depicting Prompt Sensitivity Index (POSIX) for

various (Ap, A;) across models

finetuned on Tiilu-v2, Alpaca-Cleaned and LIMA. Least prompt sensitivity configuration is highlighted
with a red circle. The color map is based on relative gain with respect to conventional instruction tuning.
Rows correspond to prompt token weights (),) and columns correspond to response token weights (A).
Conventional instruction tuning is marked with I T and base model performance is marked with Base.

note that the exact optimal (A, A,) configuration
for DPO might be different compared to optimal
(Ap; Ar) of instruction-tuning, we find that DPO
performed on top of optimal (\,, \,) configura-
tion for instruction tuning still yields 2.44% rela-
tive gain in performance over DPO on top of con-
ventional instruction tuned models. These findings
highlight that models fine-tuned by WIT serve as
better starting points for the preference alignment
training phase, and the performance gains transfer
even after DPO training.

4.3 Robustness to Prompt Variations

Beyond achieving high performance on various
evaluation benchmarks, a key desirable property
of an instruction-tuned LM is its robustness to
prompt variations. Prior work has shown that
these models are often sensitive to minor changes
in prompts (Arora et al., 2023; Leidinger et al.,
2023; Voronov et al., 2024; Mizrahi et al., 2024;
Sclar et al., 2024). To quantify this, Chatterjee
et al. (2024) introduced the Prompt Sensitivity In-
dex (POSIX), which measures a model’s sensi-

- DPO on top of DPO on top of .

Model Training conventional . wel'ghted . Rela}lve

Data instruction tuning instruction tuning Gain

(Optimal \p, Ar)

Tiilu-v2 29.21 32.22 +10.31%
Llama-3.2-1B  AlpacaCleaned 28.76 32.41 +12.69%
LIMA 24.71 24.97 +0.81%
Tiilu-v2 49.05 50.74 +3.45%
Gemma-2-2B  AlpacaCleaned 49.37 51.53 +4.38%
LIMA 38.21 39.63 +3.72%
Tiilu-v2 45.42 46.05 +1.39%

Llama-3.2-3B  AlpacaCleaned 43.08 43.08 0.00%
LIMA 41.52 41.63 +0.27%
Tiilu-v2 57.99 61.68 +6.36%
Mistral-7B AlpacaCleaned 57.81 64.03 +10.76%
LIMA 46.55 59.2 +27.18%
Tiilu-v2 56.91 58.01 +2.03%
Llama-3-8B  AlpacaCleaned 53.86 57.92 +7.54%
LIMA 28.94 374 +29.23%
Average +8.01%

Relative Gain ~

Table 3: Relative percentage gain of DPO on top
of WIT, for optimal (\p, A.), over DPO on con-
ventional instruction tuning.

tivity to intent-preserving prompt variations, such
as spelling errors, re-wordings or prompt format
changes. Figure 4 reports POSIX values for our
models, using intent-preserving variants of 5K
randomly sampled AlpacaCleaned prompts as pro-
vided by Chatterjee et al. (2024).

In line with our observations in the case of



Finetuning Average Average
Data Optimal )\, Optimal )\,
Tiilu-v2 0.20 0.58
Alpaca-Cleaned 0.36 0.49
LIMA 0.35 0.6

Table 4: Optimal prompt-token weight ()\,) and
response-token weight (\,) for various train-
ing datasets averaged across different (model,
evaluation_benchmark) combinations. A rela-
tively low prompt-token weight, along with a rela-
tively moderate response-token weight, yields the
best performance for all three training datasets.

performance on evaluation benchmarks, it can be
noted from Figure 4 that the models finetuned
using the conventional instruction tuning loss al-
most never are the best in terms of prompt sen-
sitivity (except for 1 out of 15 combinations),
and are often more sensitive than even the cor-
responding base model (e.g., Llama-3-8B across
all datasets). Also, lower response-token weights
consistently lead to reduced sensitivity to input
changes. Taken together with benchmark per-
formance (Figures 2 and 4), these results sug-
gest that a moderate response-token weight offers
the best trade-off between robustness and perfor-
mance, further highlighting the limitations of ex-
treme response weighting.

5 Discussions

Building on above empirical results, we discuss
broader patterns and preliminary insights that
could inspire future studies on the interplay be-
tween task characteristics and token weighting.

5.1 Prompt-Token Weight: When and Why?

As shown in Figures 6, 7, and 8 in the Appendix,
the optimal prompt-token weight varies with the
combination of language model, training dataset,
and the evaluation benchmark. To gain insights
that may help us understand when and why a non-
zero prompt-token weight is beneficial, we con-
duct a correlation analysis between various prompt
characteristics (e.g., prompt length) and the opti-
mal prompt-token weight, by varying one variable
at a time.

Role of Finetuning Data in Selection of
Prompt-Token Weight. Table 4 reports
the optimal prompt-token weight (\,) and
response-token  weight (\,) for different
finetuning datasets averaged across various

(model, evaluation_benchmark) combinations.
This helps us study how the optimal prompt-token
weight varies with finetuning data. While the
average optimal prompt-token weight for all fine-
tuning datasets is in the low-to-moderate range, it
is comparatively lower for Tiilu-v2 compared to
Alpaca-Cleaned or LIMA. To better understand
the possible dataset characteristics contributing to
these trends, we study the prompt characteristics
in the finetuning datasets, such as the average
prompt length and the average generation ratio
(i.e., the ratio of response length and prompt
length) to capture the length characteristics,
n-gram diversity (Meister et al., 2023) of prompts
to capture lexical diversity, and the average depth
of prompts’ dependency parse tree to capture
syntactic complexity.

Table 5 shows that the average generation ratio
is positively correlated with the optimal prompt-
token weight, while the average prompt length ex-
hibits a negative correlation. This indicates that
higher prompt-token weights tend to be preferred
when the finetuning data contains longer comple-
tions relative to prompts, but not necessarily when
the prompts themselves are longer. Furthermore,
both lexical diversity, as measured by n-gram di-
versity, and syntactic complexity of the prompts
are observed to negatively influence the optimal
prompt-token weight.

Role of Evaluation Benchmark in Selec-
tion of Prompt-Token Weight. The optimal
prompt- and response-token weights for differ-
ent evaluation benchmarks averaged across vari-
ous (model, training_dataset) combinations are
presented in Table 2. This helps us study how
the optimal prompt-token weight varies with eval-
uation benchmarks. We observe that the optimal
prompt-token weight varies from low to moder-
ate, ranging from 0.17 for BBH to 0.48 for IFE-
val. To investigate the possible underlying bench-
mark characteristics contributing towards the ob-
served optimal prompt-token weights, we obtain
prompt characteristics of evaluation benchmarks
(similar to those extracted in the case of finetuning
data) whose correlation with the optimal prompt-
token weight is presented in Table 5. As with fine-
tuning data, a lower prompt-token weight yields
better performance on benchmarks with longer
prompts; syntactic complexity of the prompts also
has a negative correlation with optimal prompt-
token weight. However, unlike with training data,



. Train Prompt Characteristics
Correlation

Eval Prompt Characteristics

Model Characteristics

Ave. N-gram  Avg. Parse Ave. N-gram  Avg. Parse Ave. Model Avg..log—p rob - Avg. log-prob
Gen. . Prompt . Prompt . of train prompt  of eval prompt
. Div. Tree Depth Div. Tree Depth Size
Ratio Len. Len. tokens tokens
Spearman  0.50 -0.50 -0.50 -0.50 0.40 -0.50 -0.70 0.20 0.50 0.50
Kendall’s 7 0.33 -0.33 -0.33 -0.33 0.40 -0.20 -0.60 0.20 0.20 0.20

Table 5: Correlation coefficients (Spearman and Kendall’s 7) between the optimal prompt-token weight
(A\p) and various characteristics of the finetuning datasets, evaluation benchmarks and language models.

Language Average Average

Model Optimal )\, Optimal \,.
Llama-3-1B 0.33 0.63
Gemma-2-2B 0.42 0.57
Llama-3-3B 0.20 0.57

Mistral-7B 0.32 0.53
Llama-3-8B 0.35 0.50

Table 6: Optimal prompt-token weight ()

and response-token weight (\,) for various
language models averaged across different
(training_dataset, evaluation_benchmark)
combinations. A relatively lower prompt-token
weight, coupled with a comparatively moderate
response-token weight, yields the best perfor-
mance for all five models.

we observe that the lexical diversity of evaluation
benchmarks is positively correlated with the opti-
mal prompt-token weight.

Role of Language Model in Selection of

Prompt-Token = Weight. To study how
the optimal prompt-token weight varies
across language models, Table 6 reports

the optimal prompt-token weight ()\,) and
response-token  weight (A,) for different
language models, averaged across various
(training_dataset, evaluation_benchmark)

combinations.  We observe that the optimal
prompt-token weight varies from low to moderate,
ranging from 0.20 for Llama-3-3B to 0.42 for
Gemma-2-2B. To better understand the potential
factors contributing to these variations, we obtain
model-dependent characteristics of train datasets
and evaluation benchmarks, such as the average
next-token log probabilities of prompts from fine-
tuning datasets and evaluation benchmarks. The
average next-token log probability is observed to
be positively correlated with prompt-token weight
(c.f. Table 5), suggesting that if a model has
higher perplexity on prompts of a certain dataset,
then a lower prompt-token weight can be more
suitable. Furthermore, model size has a weak

positive correlation with optimal Ay,

In Summary. It is important to note that, as ob-
served in our analysis, multiple factors influence
the optimal prompt-token weight, often in differ-
ent directions. Thus, considering the combined
effect of these characteristics should be more ef-
fective than focusing on any single property when
selecting prompt-token weights for WIT.

5.2 Impact of Instruction Tuning on Prompt
and Response Probabilities

To assess how instruction tuning alters model be-
havior, we analyze the shifts in the log-probability
distributions for prompt and response tokens. For
this, we compute the length-normalized average
log-probabilities for the training instances in Tiilu-
v2 across the base and two instruction-tuned vari-
ants of Gemma-2-2B, Mistral-7B, and Llama-3-
8B (see Figure 5). The 1B and 3B variants of
Llama-3 exhibit similar trends as the 8B model
and are omitted for brevity. For each instance,
we compute the average log-probability per token
for (i) the prompt, and (ii) the response given the
prompt, enabling fair comparison across different
sequence lengths.

Behaviour of the Base LMs. Across all model
families, we observe that base LMs assign lower
probabilities to prompts in isolation compared to
responses conditioned on prompts, as evidenced
by a leftward shift in prompt probability distri-
butions relative to responses (first row in Fig-
ure 5). This aligns with expectations, as mod-
els pretrained on naturally occurring text develop
a stronger prior over plausible completions than
over standalone queries.

Effect of Conventional Instruction Tuning.
When models are instruction-tuned using the con-
ventional response-only loss, we observe that
while the probability distribution of responses re-
mains largely unchanged compared to the base
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Figure 5: Distribution of average log probabilities for prompts and responses (given the corresponding
prompts) from training samples of Tiilu-v2, comparing base models with their instruction-tuned counter-
parts trained using the conventional response-only loss and the WIT loss (with optimal token weights).

LM (except in the case of Mistral), the probability
assigned to prompt tokens shifts further left, indi-
cating a decrease in their likelihood (middle row
in Figure 5). This reveals an interesting insight on
the effect of response-only loss — while the prob-
ability of the correct response given the prompt
remains almost unchanged, the likelihood of the
prompt itself decreases. Thus, the conventional in-
struction tuning loss, though it doesn’t explicitly
consider the prompt tokens, negatively affects the
prediction of the input prompt tokens. We hypoth-
esize that this degradation in prompt modelling
might hurt the instruction comprehension ability
of the models, potentially leading to a drop in
performance on instruction-following benchmarks
like IFEval, as observed in Figure 6.

Effect of WIT. When trained with the WIT loss
using optimal prompt-response weights, the
prompt probability distribution shifts rightward
and aligns closely with that of the responses, es-
pecially for Llama and Gemma models (bottom

row in Figure 5). For Mistral, however, this shift
is negligible as the optimal WIT setting involves
a null prompt weight. These observations indi-
cate that WIT encourages the model to assign rel-
atively higher likelihood to prompts, while the av-
erage log-likelihoods of responses remain simi-
lar or, in some cases, even decrease relative to
conventional instruction tuning, likely improving
instruction comprehension and mitigating overfit-
ting on response patterns. This balanced treat-
ment of prompts and responses contributes to bet-
ter generalization across downstream tasks as well
as enhanced robustness, as demonstrated in Fig-
ures 2 and 4.

6 Related Work

We review the prior work on instruction tuning
across three main dimensions — instruction tuning
algorithms, finetuning data, and evaluation.

Instruction Tuning Algorithms. Conventional
instruction tuning uses an auto-regressive objec-



tive with loss zeroed on prompt tokens — a prac-
tice that, as recent work suggests, can encourage
overfitting to response patterns (Jain et al., 2024;
Shi et al., 2025). To mitigate this, Jain et al. (2024)
proposed NEFTune, which adds noise to input em-
beddings to improve response quality, but offers
no gains on OpenLLM benchmarks. Another ap-
proach, introduced by Shi et al. (2025) as Instruc-
tion Modelling, is akin to continual pre-training
and applies loss to both prompt and response to-
kens; this benefits low-resource settings but under-
performs on OpenLLM benchmarks. Assigning a
small weight to prompt-token loss has also shown
promise for datasets with short responses (Huerta-
Enochian and Ko, 2024), though its effective-
ness has primarily been validated on Alpaca vari-
ants. Other works leverage large proprietary mod-
els for phased training or fine-tuning on GPT-
4-generated completions (Pang et al., 2024; Xie
et al.,, 2024). Recent findings even suggest that
instruction-following can emerge from response-
only training (Hewitt et al., 2024; An and Kim,
2024), though this requires further validation.

Instruction Tuning Data. The effectiveness of
instruction tuning has been found to heavily de-
pend upon task composition (Wang et al., 2023;
Dong et al., 2024; Renduchintala et al., 2024),
data quality (Zhou et al., 2023a; Ding et al., 2023)
and data quantity (Ji et al., 2023; Yuan et al,,
2023). Notable instruction tuning datasets include
FLAN (Wei et al., 2022), Super-Natural Instruc-
tions (Wang et al., 2022b), Alpaca (Taori et al.,
2023), Tiilu (Ivison et al., 2023), Dolly (Conover
et al., 2023), and LIMA (Zhou et al., 2023a) to
name a few. For a more comprehensive review of
data management for instruction tuning, we refer
the reader to the survey by Wang et al. (2024).

Evaluation of Instruction Tuned Models.
Evaluation of instruction tuned models can be
broadly classified into two categories: close-
ended and open-ended evaluations. Close-ended
evaluations offer more objective evaluations —
these include multiple-choice questions (MCQs)
based benchmarks like MMLU (Hendrycks et al.,
2021), BBH-Hard (Suzgun et al., 2023) as well
as benchmarks like IFEval (Zhou et al., 2023b)
which contain verifiable prompts, that can be
evaluated using a program for instance. Open-
ended evaluations, on the other hand, attempt to
assess the quality of the output. A most common

method is to use LLM-as-a-judge, where an LLM
like GPT-4 is used to perform comparisons of
responses to assess their quality. AlpacaEval (Li
et al., 2023) is one such approach. For a compre-
hensive review of evaluation methods, we refer
the reader to the survey by Zhang et al. (2023).

7 Conclusions

We proposed WIT as an alternative to conven-
tional instruction tuning and analyzed the effects
of differentially weighting prompt and response
token losses. Our experiments on various models,
datasets, and benchmarks show that both conven-
tional instruction tuning and continual pre-training
are generally suboptimal. While prior work (Wei
etal., 2022; Ivison et al., 2023; Zhou et al., 2023a;
Shi et al., 2025; Huerta-Enochian and Ko, 2024)
consistently assigns maximal weight to response
tokens, our results highlight the advantages of re-
ducing response-token loss and including prompt-
token loss. This overlooked balance offers new di-
rections for robust instruction tuning. We also ob-
serve that the gains with WIT transfer even to the
preference alignment phase. Moreover, we find
that finetuning solely on prompts — though not al-
ways optimal — can still impart instruction follow-
ing ability, highlighting potential for instruction
tuning without response annotations.

Beyond performance, our findings suggest that
instruction tuning loss functions influence model
robustness and may shape biases. This highlights
loss function design as a potential tool for aligning
LMs with ethical and safety objectives, mitigating
adversarial vulnerabilities, and improving reliabil-
ity in real-world applications.

Limitations

One limitation of our approach is the use of fixed
weights, i.e., one for all prompt tokens and another
for all response tokens, throughout training. How-
ever, our preliminary analysis shows that optimal
weights likely depend on factors like prompt and
response likelihood from the lens of the model,
which evolve during training. Moreover, no uni-
versal values of optimal prompt and response to-
ken weights exist across models or datasets. Fu-
ture work exploring adaptive loss weighting strate-
gies that dynamically adjust based on model pre-
dictions or training dynamics may be key to devel-
oping more robust and generalizable models.
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Figure 6: Heatmaps depicting performance on MMLU (first row), BBH (second row), AlpacaEval (third
row), IFEval (fourth row), and MT-Bench (fifth row) for different configurations of (A,, ;) and for
different models finetuned on Tiilu-v2. In each heatmap, the best performance is highlighted with a red
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Base.



Llama-3-1B Llama-3-3B Llama-3-8B Mistral-7B Gemma-2-2B

A A A A
1.0 0.0 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
1 2 2352 23.68 ,) Q. Base! 53.83 54.53 52.88 5164 Q.Base: 46.66 51.93 51.92 49.91 )T
13.02 o - " 23.93 © 51.85 " " . a 55.54 © 26.48 . . . " 49.04
12.51 17.69 19.74 20.43 50.99 53.57 53.11 54.75 54.65 54.99 55.23 | 53.48 43.22 44.52 45.44 45.62
J 12,10 11.73 11.89 11.60 14.13 15.87 54.59 54.51 53.71 36.42 40.46 42.59 44.62
< < <
11.63 12.11 11.48 11.73 13.18 14.35 16.11 17.32 49.82 55.10 53.10 50.09 e 54.59 55.81 54.52 37.51 40.36 42.09
2 1148 1179 12.33 1218 14.92 15.53 55.58 55.61 55.17 55.34 ’ 5428 53.86 35.88 3773 39.63
11.08 11.92 11.84 12.59 13.39 13.93 15.77 55.65 55.41 55.42 55.11 53.87 55.08 3625 3727
A A A A A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.4 0.6 0.8 1.0
9 _Base: 1 © _Base: I © _Base: I © _Base: T © _Base: jud
S 2a.39 26.68 26.59 26.60 26.69 26.68 S 30.69 34.77 34.54 EIR:LEETR:LY 34.80 S 37.26 36.18 36.28 32.25 34.71 35.40 S 3a.74 33.24 35.26 35.11 34.85 33.76 &7 29.17 30.35 30.82 30.76 30.67

33.56 34.07 34.63 34.54 3 35.82 31.24

e

26.13 26.66 26.59 26.49

33.07 33.37 33.53 33.70 g 27. 37.54 30.82 30.79

A
A

K

33.41

34.13 34.08 30.4a

36.50 30.86

25.36 25.97 26.20 26.46 32.18 32.84 33.01 33.37 35.40

BBH

25.66 25.71 26.19 32.22 32.50 32.85 33.22 35.09 36.11 EVALY 36.09 33.31 31.92 32.76 34.89 : 29.83 30.49 30.61 30.96 30.93
25.63 25.99 32.31 32.42 32.53 32.56 34.16 36.23 33.08 32.08 33.10 30.61 30.55 30.79
A A A A A
0.0 0.2 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
o Base: v o Base: o Base: o Base: m o_Base: m
S 1.99 31.80 &7 21.37 53.29 49.32 54.91 S 17.14 60.37 60.00 61.61 60.62 & 28.82 53.54 64.47 63.73 65.09 65.22 S 8.70 55.40 56.40 55.65 57.39 56.15

p—

= s0.68 201 3068 3118 2969 sies 5202 5300 6159 6173 0.7 sms..o. s6.40 663
0 2032 209 2957 3130 3207 s0.06 5043 5235 ss.6 5764 .39
cd 27.70 29.94 29.32 30.93 30.93 51.68 51.80 52.67 52.30 52.55 e LIRS 50.43 .. E 70.06 e X 55.40 55.40 57.39

— 24.60 30.19 30.06 31.06 31.30 50.56 51.18 51.68 49.94 52.30 5 66.46 65.59 53.66 55.90.!5.01

24.97 29.94 31.68 31.18 28.07 49.19 51.68 50.81 50.43 52.17 ? 64.84 65.22 70.06 70.56 |68.57 W3l 51.18 54.66 54.78 56.52 57.02

A
04 06 08 10

A
0.0 0.2 0.4 0.6 0.8 1.0 0.4 0.6 0.8 10 0.0

A
0.0 0.2 0.4 0.6 0.8 10

i I Base: m
3.24 [ERCREERCRIEREY 7, a.68 4.08 863 8.03 7.67 Ty 2o 11s1 11.30 BUREY 1T
827 516 4.80 384 3.84 6.83 6.95 647 647 1019 7.19 34.41 35.13 35.61 32.49 2134 19.30 16.31 16.43 16.31
—
§ 971 791 719 528 456 791 612 739 7.07 1583 1199 10.67 8.39 32.85 33.81 3285 20,02 2134 18.35 15.95
m N
1127 9.23 863 7.55 6.47 9.11 803 7.07 7.07 1511 13.79 e 36.45 34.05 e 21.46 21.94 20.14
=]
11.99 1031 9.47 815 7.55 ROPTEL] 1055 851 815 6.83 13.67 33.45 35.37 22558 2122 21.70
13.31 1043 9.59 9.23 12.95 9.95 911 8.03 4 PERZAPTRIIPENTY 15.47 30.82 32.37 2134
A A A A A
04" 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

00 02 04 06 08 1.0

I o_Base: I o_Base:
4.90 5.4 ik 2 %50 534 541 536 531

I
381 388 S5,

o Base: 3
2-%5) 549 561 564 555 - 489 493 488 489 U

5.59 S Lol

520 503 501 5.16 539 538 536 5.44 5.01

5.42 532 . 5.

0.2

474 481 493 512 a.81

0.4

o

3.66 3.86 3.83 3.71 4.80 4.89 4.93 4.85 4.92

0.6

3.44 3.66 3.66 3.77 4.89 470 4.93 484 472 4.88 4.99

0.8

MT-Bench

1.0

3.61 379 371 3.77 3.58 484 476 464 4.86 4.83 476 a.93
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different models finetuned on Alpaca-Cleaned. In each heatmap, the best performance is highlighted
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Figure 8: Heatmaps depicting performance on MMLU (first row), BBH (second row), AlpacaEval (third
row), IFEval (fourth row), and MT-Bench (fifth row) for different configurations of (A,, ;) and for
different models finetuned on LIMA. In each heatmap, the best performance is highlighted with a red
circle. The color map is based on relative gain with respect to conventional instruction tuning. Each row
of a heatmap corresponds to a prompt-token weight, and each column corresponds to a response-token
weight. Conventional instruction tuning is marked with IT, and base model performance is marked with
Base.



